Modeling Dividends and Other Distributions Reconciling The Change In Asset Value Over Time

Gary Schurman, MBE, CFA

August, 2021

In this white paper we will build a model to reconcile the cumulative change in random asset value over the time interval $[0, t]$. To that end we will work through the following hypothetical problem...

Our Hypothetical Problem

We are tasked with reconciling the change in asset value over the time interval $[0,5]$ for each random draw from a normal distribution. We are given the following go-forward model assumptions...

Table 1: Go-Forward Model Assumptions

Description	Value
Asset value at time zero (\$)	$1,000,000$
Expected return - mean (\%)	10.00
Expected return - volatility (\%)	20.00
Dividends and other distributions (\%)	4.00

Our task is to answer the following question given that the random draws from a normal distribution with mean zero and variance one are $2.00,1.00,0.00,-1.00$ and -2.00 .
Question: Reconcile the change in asset value for each random draw above.

Modeling Asset Value Over Time

We will define the variable A_{t} to be asset value at time t, the variable μ to be the expected rate of return, the variable ϕ to be the dividend yield, the variable σ to be expected return volatility, and the variable δW_{t} to be the change in the underlying brownian motion at time t. The stochastic differential equation for the change in asset value over the time interval $[t, t+\delta t]$ is...

$$
\begin{equation*}
\delta A_{t}=\mu A_{t} \delta t-\phi A_{t} \delta t+\sigma A_{t} \delta W_{t} \ldots \text { where } . . \delta W_{t} \sim N[0, \delta t] \tag{1}
\end{equation*}
$$

The solution to the SDE in Equation (1) above is the equation for random asset value at time t, which is...

$$
\begin{equation*}
A_{t}=A_{0} \operatorname{Exp}\left\{\left(\mu-\phi-\frac{1}{2} \sigma^{2}\right) t+\sigma \sqrt{t} z\right\} \ldots \text { where } \ldots z \sim N[0,1] \tag{2}
\end{equation*}
$$

We are currently standing at time zero and want to simulate asset prices at time t. We will define the variable $z(n)$ to be the n'th random variate pulled from a normal distribution with mean zero and variance one. If we define the variable $\theta(n)$ to random asset return for the n'th trial then the equation for random return over the time interval $[0, t]$ is...

$$
\begin{equation*}
\theta(n)=\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma \sqrt{t} z(n) \tag{3}
\end{equation*}
$$

Using Equations (2) and (3) above the equation for random asset value at time t for the n'th trial is...

$$
\begin{equation*}
A(n)_{t}=A_{0} \operatorname{Exp}\{\theta(n)-\phi t\} \tag{4}
\end{equation*}
$$

Using Equation (4) above the equation for asset value at any time $0 \leq s \leq t$ is...

$$
\begin{equation*}
A(n)_{s}=A_{0} \operatorname{Exp}\{(\lambda-\phi) s\} \ldots \text { where } \ldots \lambda=\frac{\theta(n)}{t} \tag{5}
\end{equation*}
$$

The derivative of Equation (5) above with respect to the time variable s is...

$$
\begin{equation*}
\frac{\delta A(n)_{s}}{\delta s}=\lambda A_{0} \operatorname{Exp}\{(\lambda-\phi) s\}-\phi A_{0} \operatorname{Exp}\left\{\frac{\theta(n)}{t} s-\phi s\right\} \tag{6}
\end{equation*}
$$

Note that we can rewrite Equation (6) above as...

$$
\begin{equation*}
\delta A(n)_{s}=\lambda A_{0} \operatorname{Exp}\{(\lambda-\phi) s\} \delta s-\phi A_{0} \operatorname{Exp}\{(\lambda-\phi) s\} \delta s \tag{7}
\end{equation*}
$$

Using the first half of Equation (7) above the equation for total return over the time interval $[0, t]$ is...

$$
\begin{equation*}
\text { Total return }=\int_{0}^{t} \lambda A_{0} \operatorname{Exp}\{(\lambda-\phi) u\} \delta u=\frac{\lambda A_{0}}{\lambda-\phi} \operatorname{Exp}\{(\lambda-\phi) u\} \sum_{u=0}^{u=t}=\frac{\lambda A_{0}}{\lambda-\phi}(\operatorname{Exp}\{(\lambda-\phi) t\}-1) \tag{8}
\end{equation*}
$$

Using the second half of Equation (7) above the equation for total dividends paid out over the time interval $[0, t]$ is...

$$
\begin{equation*}
\text { Total dividends }=\int_{0}^{t} \phi A_{0} \operatorname{Exp}\{(\lambda-\phi) u\} \delta u=\frac{\phi A_{0}}{\lambda-\phi} \operatorname{Exp}\{(\lambda-\phi) u\}\left[_{u=0}^{u=t}=\frac{\phi A_{0}}{\lambda-\phi}(\operatorname{Exp}\{(\lambda-\phi) t\}-1)\right. \tag{9}
\end{equation*}
$$

The Answer To Our Hypothetical Problem

Using the model parameters in Table 1 above and the equations above the answer to the question is...
Table 2: Asset Value Reconciliation

Random Draw	Beginning Value	Total Return	Dividends Paid	Ending Value
2.00	$1,000,000$	$2,281,672$	$-352,047$	$2,929,625$
1.00	$1,000,000$	$1,146,050$	$-272,826$	$1,873,224$
0.00	$1,000,000$	412,664	$-214,911$	$1,197,753$
-1.00	$1,000,000$	$-62,023$	$-172,125$	765,852
-2.00	$1,000,000$	$-370,146$	$-140,163$	489,691

